

Iterative Closest Point Algorithm for Point Cloud Registration

Team

Sapan Agrawal Sanjeev Kannan Kartik Patath Thejus Jose Instructor

Prof. Michael Gennert

Introduction

- 3D data representation
- Point clouds, Voxel clouds, meshes, etc.

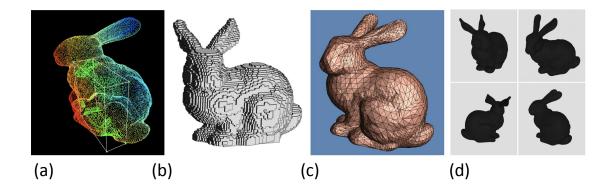


Fig.1 (a) point cloud (source: <u>Caltech</u>), (b) voxel grid (source: <u>IIT Kharagpur</u>), (c) triangle mesh (source: <u>UW</u>), (d) multi-view representation (source: <u>Stanford</u>)

What is registration of a point cloud ?

• The problem of consistently aligning a given 3D point cloud with a reference model

Registration of model(green) with the data(red)

Problem statement

End Goal : Register 2 Point Clouds using ICP

Successful registration involves:

- 1. Accurate Correspondence
- 2. Accurate Rotation and Translation

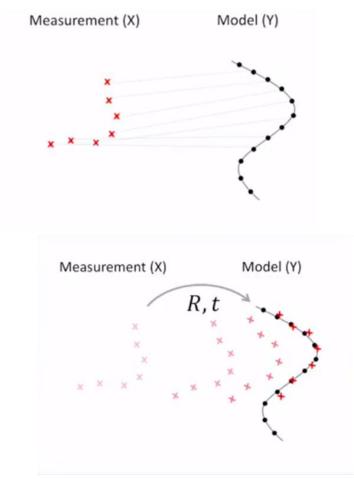


Fig.2 Steps for Registration (source: <u>UPenn</u>)

What is ICP?

- Iterative Closest Point Algorithm
- ICP is one of the widely used algorithms in aligning 2D/3D data (simply said it is a widely used registration method)

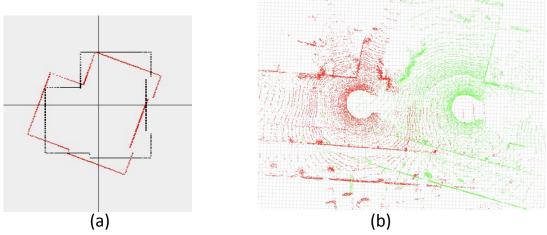
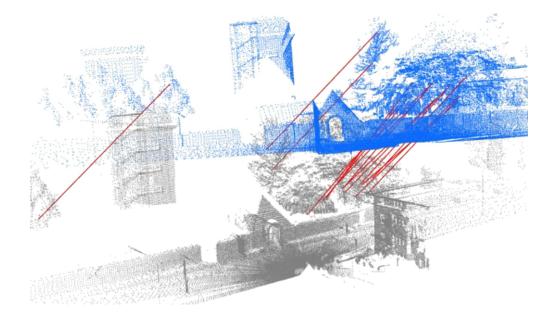


Fig.2 (a) 2D unaligned scan data (source: [5]), (b) unaligned 3D scan data (source: [6])

What is ICP?

- The algorithm iteratively revises the transformation (combination of translation and rotation) needed to minimize an error metric.
- Usually the error metric is a distance from the source to the reference point cloud, such as the sum of squared differences between the coordinates of the matched pairs.

Error =
$$min \sum_{j=1}^{m} || c_j - T(b_j) ||^2$$

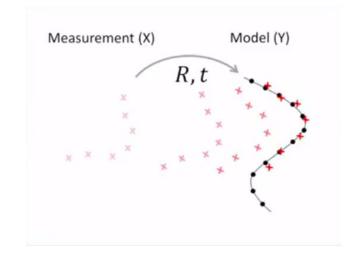

Algorithm

Algorithm 1: ICP

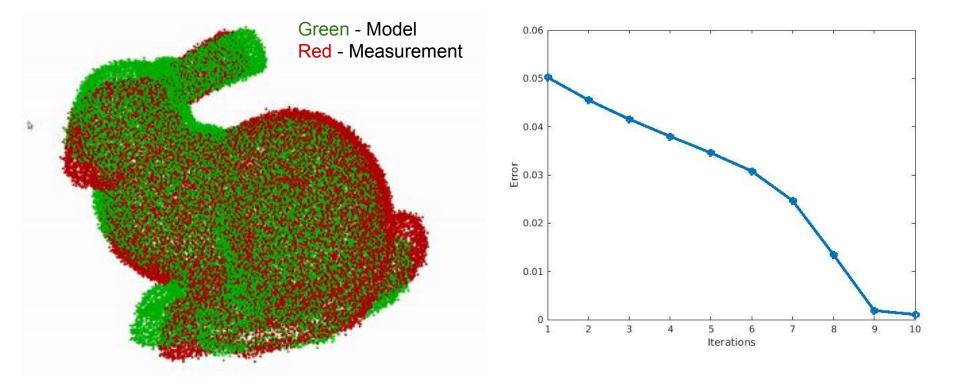
Input: $A = \{a_i \in \mathbb{R}^3, i = 1, 2, ..., n\}$ $B = \{b_i \in \mathbb{R}^3, j = 1, 2, ..., m\}$ initial transformation: $T_0 \in SE(3)$ **Output:** $T \in SE(3)$ thatalignsAandB Initialize: $T \leftarrow T_0$ while not converged do **Correspondence:** $c_i = FindClosestPoint(T(b_j)), c_j \in A$ **Minimization:** $T = \operatorname{argmin} \sum_{j=1}^{m} \parallel c_j - T(b_j) \parallel^2$ end

P. J. Besl and N. D. McKay, "A method for registration of 3-D shapes," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, pp. 239-256, Feb. 1992, doi: 10.1109/34.121791.

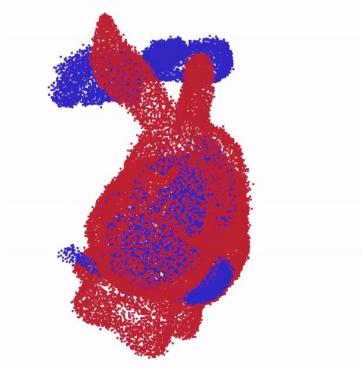
Finding Correspondences


Using KD Tree find the nearest point.

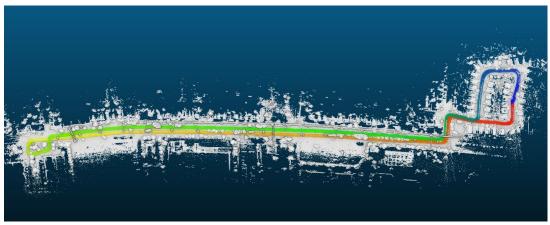
Finding Appropriate Rotations and Translations


• Rotation is found using SVD to minimize the error

Error = $min \sum_{j=1}^{m} || c_j - T(b_j) ||^2$


• t = y - Rx

Result


Failure to register partial point cloud

Partial point cloud registration using ICP

Why do we care about "Registration"?

- Autonomous Vehicle Localization
- Visual Odometry for UAVs and Unmanned Ground Vehicles
- 3D Terrain Mapping

3D Terrain Mapping. Source: Unmanned Systems Lab, TAMU

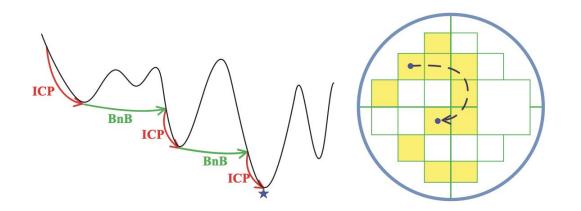
Visualization of a LiDAR point cloud. Source: Graham Murdock for Popular Science

Advantages and Disadvantages of ICP

Advantages:

- Relatively easy to understand
- Does not require local feature extraction
- Algorithm can be generalized to n-dimensional space

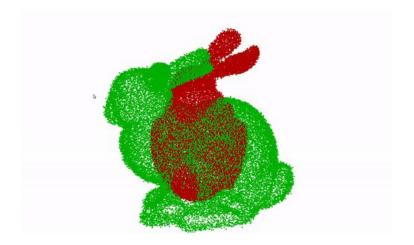
Disadvantages:


- Converges to local minima
- Convergence time depends on initializations of Rotation and Translation
- Is sensitive to outliers
- High "time complexity" in finding point associations
- Cannot handle partial point cloud registration

Overcoming the Drawbacks of ICP

- Speed up closest point selection using KD-trees and Dynamic Caching
- Avoid Local minima by removing outliers, using information besides just geometry (colour, curvature), etc
- Carefully initializing R and T to decrease convergence time.
- Global Optimal ICP

GoICP (Extended work)


- Overcomes the local minima problem by computing the **G**lobal **O**ptima.
- Recursive usage of BnB search and vanilla ICP to search the entire SE(3) space.

J. Yang, H. Li, Y. Jia, *Go-ICP: Solving 3D Registration Efficiently and Globally Optimally*, International Conference on Computer Vision (ICCV), 2013

Comparison of GoICP and standard ICP

Partial point cloud registration using Standard ICP

Partial point cloud registration using GoICP

Biogram - Collect, -G. (CV, Project) Biogram CVT Environmental providence and pp. D CVT Environmental providence and pp. D CVT Environmental providence and pp. D CVT Environmental pp. D Environmental pp. Environmental pp. D Envited Pp. Environmental pp.	. A. A., biets, san the G, desproy, each ran the system science (12) they back, back, back scientified g, deal restriction (are (12) they back, back, back, back the system (2) the spectrum (are (12) they back, back, back, back the system (2) the spectrum (back, deal restriction (2) the spectrum (2) the spectrum (2) the spectrum (2) the spectrum (2) the spectrum	Handle		
mi .i.uutit.genetry() .iu.gent.comtil .i.uutit.genetry() .iu.gent.comtil .i.uutit.genetry() .iu.gent.comtil .i.uutit.genetry() .iu.genetry() .i.uutit.genetry()<		Log (Papelincord: StartPage) St (Papelincord: StartPage) St (Canad recording	Upt protes	

References

- 1. <u>https://thegradient.pub/beyond-the-pixel-plane-sensing-and-learning-in-3d/</u>
- 2. <u>http://pointclouds.org/documentation/tutorials/registration_api.php</u>
- 3. <u>https://en.wikipedia.org/wiki/Iterative_closest_point</u>
- P. J. Besl and N. D. McKay, "A method for registration of 3-D shapes," in *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 14, no. 2, pp. 239-256, Feb. 1992, doi: 10.1109/34.121791.
- 5. <u>https://web.iiit.ac.in/~abhimanyu_p/index.html?</u>
- 6. Segal, A., Haehnel, D. and Thrun, S., 2009, June. Generalized-icp. In *Robotics: science and systems* (Vol. 2, No. 4, p. 435).

Finding R, t

Let us summarize the steps to computing the optimal translation \mathbf{t} and rotation R that minimize

$$\sum_{i=1}^n w_i \left\| (R\mathbf{p}_i + \mathbf{t}) - \mathbf{q}_i \right\|^2.$$

1. Compute the weighted centroids of both point sets:

$$\bar{\mathbf{p}} = \frac{\sum_{i=1}^{n} w_i \mathbf{p}_i}{\sum_{i=1}^{n} w_i}, \quad \bar{\mathbf{q}} = \frac{\sum_{i=1}^{n} w_i \mathbf{q}_i}{\sum_{i=1}^{n} w_i}.$$

2. Compute the centered vectors

$$\mathbf{x}_i := \mathbf{p}_i - \bar{\mathbf{p}}, \quad \mathbf{y}_i := \mathbf{q}_i - \bar{\mathbf{q}}, \qquad i = 1, 2, \dots, n.$$

3. Compute the $d \times d$ covariance matrix

$$S = XWY^{\mathsf{T}},$$

where X and Y are the $d \times n$ matrices that have \mathbf{x}_i and \mathbf{y}_i as their columns, respectively, and $W = \text{diag}(w_1, w_2, \dots, w_n)$.

4. Compute the singular value decomposition $S = U\Sigma V^{\mathsf{T}}$. The rotation we are looking for is then

$$R = V \begin{pmatrix} {}^{1} & & \\ & \ddots & \\ & & {}^{1} \\ & & {}^{1} \\ & & {}^{\text{det}(VU^{\mathsf{T}})} \end{pmatrix} U^{\mathsf{T}}.$$

5. Compute the optimal translation as

 $\mathbf{t} = \bar{\mathbf{q}} - R\bar{\mathbf{p}}.$