Curiosity-driven Exploration by Self-supervised
Prediction

Kartik Patath Sapan Santosh Agrawal

Abstract— In this project we plan to implement the
idea of curiosity based agent which learns explores the
environment using self-supervised prediction. The environ-
ment that we plan to use for this project is the Minecraft
environment and we want to solve the Navigation task of
MineRL Challenge, NeurIPS 2019 [1] . Given that we are
able to implement the above problem statement, we plan
to expand on this curiosity driven approach by improving
the current curiosity based algorithm which will act as a
baseline approach.

Index Terms—Curiosity based learning, sparse reward,
self-supervision.

I. INTRODUCTION

Rewards from the environment depict how well the
agent is performing in the required task [2]. Majority of
the techniques in reinforcement learning depend upon
the reward from the environment to select the actions
which maximize the overall reward. However, in real-
world scenario such explicit rewards might be sparse or
even not available to the agent.

The idea of Curiosity-Driven learning [3], is to build
a reward function that is intrinsic to the agent (generated
by the agent itself). It means that the agent will be a self-
learner since he will be the student but also the feedback
master. Curiosity helps an agent explore its environment
in the quest for new knowledge (a desirable characteristic
of exploratory behavior is that it should improve as the
agent gains more knowledge). Further, curiosity is a
mechanism for an agent to learn skills that might be
helpful in future scenarios. In this work, we plan to
use this approach to tackle the sparse reward problem
for navigation in Minecraft environment [1]. However,
though the paper claimed to be robust to television screen
noise problem, the agent got stuck in a similar problem
of predicting dust/dirt motion when agent attacks trees
and land spots in MineRL. Thus, to tackle this problem
we explored another curiosity based method - RND. In
which the next state prediction model employed by ICM
is replaced with a Random Distillation Predictor network

All authors are from Worcester Polytechnic Institute, (kpatath,
ssagrawal, vuppununthala, jaavant) @wpi.edu

Vamshi Krishna U Johnathan A’Vant

which induces noise in the prediction model and makes
it robust to such television screen noise problem. Here
we observe that RND when employed for the mineRL
environment outperforms ICM results for both sparse
and dense navigate environments.

The report is organised as follows: Section 2 discusses
the related work. ICM is discussed in Section 3, followed
by discussion on RND in Section 4. Experimental setup
is stated in Section 5. And Section 6 provides the results
and analysis, comparing and laying down the benefits
and drawbacks of each method. Finally the work is
summarised in the Section 7, drawing the conclusion.
Future works are stated in Section 8.

II. RELATED WORK

Significant prior work has been done to tackle to
sparse reward problem either by encouraging the agent
to explore “novel” states [4], [5] or to perform actions
that reduce the error in the agent’s ability to predict
the consequence of its own actions [6], [7]. This work
however, is greatly influenced by [3]. We validate the
work on MineRL environment and state the strengths
and weakness of the ICM based method. Additionally,
we compare the results with that of [8] and discuss how
the RND method can significantly improve exploration
for the chosen environment.

III. INTRINSIC CURIOSITY MODULE (ICM)

The agent is composed of two subsystems: a reward
generator that outputs a curiosity-driven intrinsic reward
signal and a policy that outputs a sequence of actions
to maximize that reward signal. In addition to intrinsic
rewards, the agent optionally may also receive some
extrinsic reward from the environment. Let the intrinsic
curiosity reward generated by the agent at time t be 7}
and the extrinsic reward be r{ . The policy sub-system
is trained to maximize the sum of these two rewards
ry = ri 4+ r¢, with rte mostly (if not always) zero.

We make the agent curious by making it visit the states
in the environment which it has rarely explored. Thus,
rewarding the agent to explore/find new states. Also,

51,*"'/ P s
\@\; s
(Il/t ai+1
t
T+ i1 i

Fig. 1: Flow diagram showing Intrinsic Curiosity Mod-
ule(ICM) with extrinsic and intrinsic rewards

as we can enable the agent to predict only the states
which it has visited in the past by learning the forward
dynamics of the environment, the intrinsic reward can
be generated whenever the agent fails to predict the
next state. Making predictions in the raw sensory space
is undesirable because both, it is difficult and it can
distract the agent making it more curious about the ran-
dom/redundant motions in the environment (like motion
of clouds, leaves, flowers). This problem is solved by
learning only those features in the environment which
actually affects the agent’s action. This feature space is
trained by maximizing the networks ability to predict
the action (a;) which leads to next state (s;y1) given
the current state(s;) as shown in Fig. (1).

dy :g(st,st+1,91) (D

I%iID Ly(dy,ay) 2

Ly is the loss function that measured the discrepancy
between the predicted and the actual actions and g is
the inverse dynamics model. The forward model in then
trained to predict the feature encoding of the state at next
time stamp ¢ + 1,

(st11) = f(d(st),ae;0F) 3)

Ho}iFn Lr(¢(si+1), d(st)) “4)

where, L is the loss function and f is the forward
dynamics model. Thus, the intrinsic reward can be
formulated as,

=2 1 Bser1) = (sen) I3 5)

where 7 is the scaling factor. To generate the curiosity
based intrinsic reward signal, the forward and inverse
dynamics loss are optimized combined.

IV. EXPERIMENTAL SETUP
A. Environment

This work aims to compare the performances
of ICM based curiosity module and RND on a
MineRL environment. MineRL is the research project
started at Carnegie Melon University to develop
various Reinforcement Learning algorithms to better
understand the stochastic environment. [9] shows
the baselines for hosting a competition where there
are multiple environment of the game MineRL.
MineRL-v0 Dataset (as mentioned in [9] — One
of the largest imitation learning datasets with over
60 million frames of recorded human player data.
The dataset includes a set of environments which
highlight many of the hardest problems in modern-
day Reinforcement Learning: sparse rewards and
hierarchical policies. For this project, we have showed
results by using various navigation environments
like MineRLNavigateDense-v0, MineRLNavigate-v0
and MineRLNavigateExtremeDense-v0 [10]. The
envrionments mentioned below are used with wrappers
to stack the environment images, combile multiple
actions to one, discretizing the continuous observation
spaces etc.

1) MineRLNavigate-v0:: In this environment, the
goal of the agent is to move to a location depicted by
a diamond block. Apart from the standard observation
space, the observation space in this environment also has
compass angle, which points towards the goal location,
64meters from the start. There is a small horizontal offset
which is random from compass location and it might
happen that it is slightly below surface level. A sparse
reward of +100 would be given upon reaching the goal.
At this point, the episode terminates. [10] In this task, the
agent must move to a goal location denoted by a diamond
block. In addition to standard observations, the agent has
access to a “‘compass” observation, which points near the
goal location, 64 meters from the start location. The goal
has a small random horizontal offset from the compass
location and may be slightly below surface level. The
agent is given a sparse reward (+100 upon reaching the
goal, at which point the episode terminates). [1]

2) MineRLNavigateDense-v0::
MineRLNavigateDense-v0 environment is a variant of
the MineRLNavigate-v0 with dense reward shape. The
agent is given a positive/negative reward based on how
close/farther the agent moves towards/away from the
goal. The agent is spawn on random survival map [10]

3) MineRLNavigateExtremeDense-v0:: This environ-
ment is almost similar to MineRLNavigateDense-v0

except that the agent is spawn in extreme hills biome.
[10]

B. ICM

The forward model as shown in Fig. 1 has two fully
connected layers connected by ReLu [11]. Each of these
layers have 519 units. The inverse model first convert
the current state s(t) and the next state s(¢ + 1) using
a series of Convolutional Neural Networks(CNN) [12]
with wrapped environment images as input. The CNNS
have kernel sizes of 8, 4, 3 respectively and stride lengths
of 4, 2 and 1. Leaky ReLU [13] non-linearity used
after each CNN layer. The output of CNN layers is
flattened and then connected to a fully connected layer.
The dimensionality of feature vector ¢(s;) is 3136. For
the inverse model, ¢(s;) and ¢(s;4+1) are conacatenated
into a single vector and passed as inputs to a fully
connected layer of 519 units followed by an output of
fully connected layer with 7 nodes to predict one of
the 7 possible output actions. The forward model is
constructed by concatenating ¢(s;) with a; and passing
it into a sequence of two fullyconnected layers with 519
and 512 units respectively.

C. Random Network Distillation

Random Network Distiallation (RND) is another
method based on prediction that helps our agents to
explore our environment through curiosity. It taxes vis-
iting unfamiliar states by measuring the toughness of
predicting the next state. In ICM, we train the forward
model to predict ¢(s;y1) using s; and a; which leads
the agent getting stuck at scenarios which are called as
”Noisy TVs” (discussed elaborately in Results section
part C) where the forward prediction model fails to
accurately predict the next state and hence generates a
huge curiosity reward (intrinsic reward) which prompts
the agent to spend more time in front of such Noisy
TVs. Hence we can say that the prediction error is high
where the predictor fails to generalize from previously
seen examples and because the target is stochastic.This is
prevented in RND by replacing the forward model with
predicting the output of a fixed and randomly initialized
neural network (hence the name RND) onto the next
state, given that we provide next state itself as an input.
The intuition here is the fact that predictive models have
low errors in states similar to the ones they have been
trained on. In particular our agent’s predictions of the
output of a randomly initialized neural network will be
less accurate in unseen (new) states than in states the
it has already visited frequently. Hence we can say that
we are able to avoid getting stuck at Noisy TVs. The

Next-State Prediction

nnnnnnnnnnnnnnnnnnn

e O fin
a N ri=|fea=fira
vvvvvv _rrevicron
NI, finr
oy WA e
- fiofo
vvvvvv o1a17my
,,,,,,,,, o
Random Network Distillation
uuuuuuuuuuuuuuuuu

nnnn ;
a ro=|fusa—firn

e tad ‘z

nnnnnnnnn fioeify
xxxxxxx 1.t

poLicy e
oprimizER BT

Fig. 2: Image showing the difference between next state
predictions of ICM(top) and RND(bottom) algorithms []

Fig.2 we can see the difference in next state predictions
of ICM and RND.

D. Training

The training was performed on a machine with the
configuration: i5 processor, 15GB RAM, Nvidia Geforce
980 gtx with 2048 gpu cores are used for training.
For each of the models, the training was done for
approximately half a day. In the section V the results
of training and intrinsic rewards are presented.

V. RESULTS
A. Extrinsic Reward

In our experiments, we try to compare the perfor-
mance of the ICM and RND model. Through the use
of the multiple environments provided by MineRL, we
can see how well our models perform based on an agent
providing itself with an intrinsic reward and additionally
being provided with a extrinsic reward from the environ-
ment.

REWARD PER AN EPISODE

[I1CM Dense Navigation RND Sparse Navigation RND Dense Extreme Navigation [RND Sparse Extreme Navigation
Fig. 3: Reward Per Episode
In the situation of the extreme dense reward navigation

environment, the RND model obtains its best perfor-
mance. This is merely expected as such a model pro-

vides an extrinsic reward every few frame steps. In the
combination of a dense extrinsic reward and an intrinsic
reward, the agent obtains the best performance compared
to any other environment. In the two other sparse reward
environment tested on for the RND models, we still
see a well suited performance given a nearly infinite
exploration state and sparse reward. The extreme envi-
ronment takes longer to converge, as expected, give that
the environment provides the agent with a more difficult
terrain to navigate compared to the normal navigation
environment. Such results show that the RND model
can provide a proper intrinsic reward that motivates the
agent to curiously explore it’s environment an obtain an
improved reward. Whereas the ICM model is ill suited
for such tasks in the MineRL provided environments.

INTRINSIC REWARD PER AN EPISODE

4
LAY/ IR Y vﬂﬁ%ww

e T

£ 10M Dense Navigation & AND Sparse Navigtion Navigation

Fig. 4: Intrinsic Reward Per Episode

B. Intrinsic Reward

Results in figure 4 indicate the intrinsic reward gen-
erated by the agent through the use of ICM or RND. A
spike in the chart of figure 4 can be noted as an state
that the agent poorly predicted. This could be seen as a
good thing, as the agent will receive a higher incentive
to curiously explore the unexpected state. The RND
intrinsic rewards relatively sit around each other, due to
a normalization that happens to the reward before it is
returned to the agent. However in the ICM, even though
it is a few magnitudes larger than the RND rewards,
continually learns and has many drastic spikes. As noted,
these spikes relate to the agent exploring an unexpected
state which is good, but in the corresponding chart for
the extrinsic reward in figure 3, we see that the agent
never learns or obtains a positive reward. This oddly
shaped relationship was investigated and was identified
to be the result of the "Noisy TV” problem.

C. Noisy TV

The noisy tv problem is well document downfall of
the ICM agent [8]. In the event where the environment
provides and stochastic state that is independent of the
agent’s actions, for example, a tv that changes stations
every few seconds on its own, the agent begins to

procrastinate by becoming more curious of such state.
With that being said, if the agent looks at the tv it is
unable to predict, the ICM generates a high intrinsic
reward for the agent. After investigating the results of the
ICM it was discovered the many states in the MineRL
MineRL environments mimicked the noisy tv problem.
Some of these situations were, the agent being drawn to
run to the edge of the world to watch the game engine
randomly render the screen, punching stones to watch
particles fly out of the stone, watch the clouds move
across the sun, and many more. Such procrastination
of the environment had a drastic effect on the ICM
model’s performance. Given that the RND model was
designed to address this problem, allowed the RND
model to proactively explore the environment without
getting stuck at noisy TV states.

Fig. 5: Noisy TV Examples in MineRL

VI. DISCUSSION

In this work, we show that the use of curiosity learning
for exploration by the use of the RND model enables
an agent to productively play MineRL’s navigation envi-
ronments. We additionally demonstrate the RND model
significantly outperforms the ICM model in any MineRL
environment. Inversely we show that the ICM model’s
feature representation and forward model is incapable
of producing a productive intrinsic reward; that enables
the agent to curiously explore its environment without
procrastinating at certain states. After an investigation
into the failure of an agent to obtain an extrinsic reward
in the MineRL environment using the ICM Model,
we obtain evidence that many states of the MineRL
environment mimic the noisy tv problem.

Given that the original use of curiosity learning fo-
cuses on Atari games [3], our work provides insight into
any future work that focuses on 3D environments with
more rich graphics and post-processing effects. Our work
shows that potentially any future work revolving around
the use of modern games and implementation of curiosity
learning will need to address, naturally occurring noisy
TV states that exist throughout the environment.

[1
[2]

[3]
[4]

[5]

[10]

(1]

[12]

[13]

REFERENCES

“Neurips 2019 : Minerl competition,” accessed: 2019-10-31.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, 1. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep rein-
forcement learning,” 2013.

D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-
driven exploration by self-supervised prediction,” 2017.

M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton,
and R. Munos, “Unifying count-based exploration and intrinsic
motivation,” in Advances in Neural Information Processing Sys-
tems, 2016, pp. 1471-1479.

M. Lopes, T. Lang, M. Toussaint, and P.-Y. Oudeyer, “Exploration
in model-based reinforcement learning by empirically estimating
learning progress,” in Advances in neural information processing
systems, 2012, pp. 206-214.

S. Mohamed and D. J. Rezende, “Variational information max-
imisation for intrinsically motivated reinforcement learning,” in
Advances in neural information processing systems, 2015, pp.
2125-2133.

J. Schmidhuber, “A possibility for implementing curiosity and
boredom in model-building neural controllers,” in Proc. of the
international conference on simulation of adaptive behavior:
From animals to animats, 1991, pp. 222-227.

Y. Burda, H. Edwards, D. Pathak, A. Storkey, T. Darrell, and
A. A. Efros, “Large-scale study of curiosity-driven learning,”
2018.

W. H. Guss, C. Codel, K. Hofmann, B. Houghton, N. Kuno,
S. Milani, S. P. Mohanty, D. P. Liebana, R. Salakhutdinov,
N. Topin, M. Veloso, and P. Wang, “The minerl competition
on sample efficient reinforcement learning using human
priors,” CoRR, vol. abs/1904.10079, 2019. [Online]. Available:
http://arxiv.org/abs/1904.10079

“Minerl competition - general information,” 2019. [Online].
Available: http://minerl.io/docs/environments/index.html

V. Nair and G. E. Hinton, “Rectified linear units improve
restricted boltzmann machines,” in Proceedings of the 27th
international conference on machine learning (ICML-10), 2010,
pp. 807-814.

Y. Kim, “Convolutional neural networks for sentence classifica-
tion,” arXiv preprint arXiv:1408.5882, 2014.

B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation
of rectified activations in convolutional network,” arXiv preprint
arXiv:1505.00853, 2015.

