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e In this project, we have compared two state of the art

e Instead of predicting raw pixel values, the agent learns to predict

methods for curiosity driven exploration - ICM and RND
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® This feature space is learned using self-supervision - training a ANALYSIS
neural network on inverse dynamics task of predicting agent’s e ICM generates curiosity by calculating the error of predicting
Many approaches measure information gain or exploration bonus: action given its current and next states. the next state given the current state, and this leads to a big
® [1] uses an exploration strategy that maximizes information gain e The policy subsystem is trained to maximize the sum of extrinsic problem: procrastinating agents i.e. the agent stays at a place
about the agent’s belief of the environment’s dynamics. and intrinsic reward. predicting the noisy environment.

O looking at rendering scenes (unpredicatable), and punching

e [2] shows that training a forward dynamics model in a random . .
corners to view particles (as shown below).

feature space typically works as well as any other feature space RANDOM NETWORK DISTILLATION (RND)

when used to create an exploration bonus

Because of the way ICM calculates the intrinsic reward, our

e [3] calculates curiosity but that is not attracted by the stochastic agent can fall into what we call the “Noisy TV problem”.
elements of an environment improving upon ICM. ® Noisy TV problems show how next-state prediction agents can
be attracted by stochastic or noisy elements in the
environment. e Such problems were efficiently tackled by RND as seen in the

MineRL ENVIRONMENT e RND exploration is a method that calculates curiosity but that is results section.

not attracted by the stochastic elements of an environment.
e A target network, f, with fixed, randomized weights, which is
never trained. That generates a feature representation for
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