Multi-agent Motion Planning for Non-Holonomic
Mobile Robots via Heuristic Optimization

Om Vinayak Gaikwad
Robotics Engineering Department
Worcester Polytechnic Institute
Worcester, MA
ogaikwad @wpi.edu

Abstract—|[Youtube Link] The objective of this project is
to propose a motion planning methodology that can generate
trajectories for multiple non-holonomic mobile robots, which are
safe, dynamically feasible, and nearly optimal. The state-of-the-
art [4] literature divide the path search of the agents based
on priority, which is further used for planning the path using
Enhanced Conflict Based Search (ECBS). However, prioritized
optimization may lead to infeasible subproblems for lower-
priority robots due to lack of consideration by higher-priority
robots. Hence, we propose a heiristic based motion planning
approach that generates safe, dynamically feasible and near-
optimal trajectories for multiple non-holonomic mobile robots.
QOur current implementation is divided into two parts, enhanced
conflict-based search (ECBS) [1]is leveraged as the multi-robot
discrete path planner. These paths are subject to constraints to
ensure obstacle avoidance and further these paths are parsed
through a Los (Line of sight) control checking algorithm [7]
to generate a nonholonomic feasible path. Our current imple-
mentation involves A* based prioritized MAPF algorithm with
feasible motion primitives, which adhere to the non-holonomic
constraints of differential drive robot. We also propose heuristic
based A* MAPF algorithm with feasible motion primitives, which
imply the non holonomic constraints. We test our implementation
on the DiffusionBot in ARGoS. Additionally, we have developed
a custom visualizer using OpenCV to evaluate our algorithm’s
performance.

Index Terms—Multi Agent Path Finding (MAPF), Conflict-
Based Search (CBS), Motion primitives, heuristic, Non-
holonomic.

I. INTRODUCTION

Multi-robot systems due to their capacity to provide more
varied usefulness and efficiency when compared to single-
robot systems, have grown in popularity within the industry.
This system allows Mobile robots to navigate through complex
environments while coordinating with one another. This co-
ordination involves generating collision-free trajectories con-
necting the initial and final positions of each robot, which is
known as the labeled multi-robot trajectory planning problem.

In previous research, the problem of generating feasible
near to optimal trajectories for a group of robots is addressed
by using various trajectory generation methods [1]. Although,
these techniques do not guarantee optimality and work only
for fewer obstacles.

Vishrut Bohara
Robotics Engineering Department
Worcester Polytechnic Institute
Worcester, MA
vbohara@wpi.edu

Aadesh Surendra Varude
Robotics Engineering Department
Worcester Polytechnic Institute
Worcester, MA
avarude @wpi.edu

In environments with many obstacles, the trajectory plan-
ning problem is commonly solved by following a two-stage
pipeline, pathfinding and trajectory optimization, which in-
volves generating a geometric path and then optimizing it for
smooth and dynamically feasible trajectories. This pipeline can
be applied in multi-robot trajectory planning, where collision-
free discrete paths are generated for all robots, followed by
formulating a quadratic program problem to optimize the
trajectory of each robot. These multi-robot trajectory planning
algorithms using the two-stage pipeline guarantee complete-
ness and also significantly improve computational efficiency
due to the pathfinding stage providing a good initial guess for
the trajectory optimization.

However, these trajectory planning algorithms are designed
for robots with linear dynamics, which can be formulated as
a convex quadratic programming problem. In contrast, most
modern mobile robots are differential-drive and subject to
nonlinear dynamics, which makes the existing multi-robot
trajectory planning methods inapplicable since trajectory op-
timization in this case is a general nonconvex nonlinear pro-
gramming problem. Therefore, motion planning for multiple
differential-drive robots is typically tackled via discrete formu-
lations. However, these planned piecewise linear paths include
corner turns that are dynamically infeasible for differential-
drive robots, making them difficult for the robots to execute.

II. LITERATURE REVIEW

The paper “Efficient Trajectory Planning for Multiple Non-
holonomic Mobile Robots via Prirotizied Trajectory Opti-
misation” [4]] presents an approach for planning efficient
trajectories for multiple non-holonomic mobile robots in clut-
tered environments. The paper proposes a prioritized trajec-
tory framework to overcome the computational complexity in
multi-robot trajectory planning. The problem focused here is
to solve issues associated with multi-robot path planning by
finding optimal trajectories for multiple robots while avoiding
collisions with the surrounding obstacles and other robots as
well. As explained in this paper this becomes more chal-
lenging when the robots are non-holonomic considering the
constraints.

To solve the challenge of multi-robot path planning the
authors have devised the following solution: First, using a

https://youtu.be/HCzZ_hJyARg

multi-robot path planner to generate solutions to an initial
problem by finding the path from the start to the goal. This is
done by first implementing a search method to find the shortest
and collision-free path for all non-holonomic robots.

Implementing a safe corridor around each robot’s path
which models the safe space of the robot along with a
prioritized optimization method increases the computational
efficiency while decoupling the multi-robot trajectory opti-
mization problem. In this work Enhanced Conflict Based
Search (ECBS) method is used to take advantage of the multi-
robot path planner. ECBS works in a two-fold method, first,
at a high level, a binary constraint tree is formed to resolve
the detected conflicts, and at the low-level optimal paths for
individual robots are planned. In the trajectory optimization
process the line segment of the path is divided into h equal
parts and the method is followed in two parts: First, the
differences between the two control inputs are penalized for
the smoothness of trajectories, and in second part since the
obtained solution is already feasible to keep this feasibility
the deviation between the optimal trajectory and the references
trajectory is penalized.

Lastly, exhaustive evaluations of the proposed approach
by performing simulations and performing real-world experi-
ments. In this paper the authors have tested their algorithms
using OctoMap to visualise the occupancy map and IPOPT to
solve the trajectory optimisation problem. In the real world,
the multi-robot navigation is done using 3 robots and one of
the robots is equipped with LiDAR which is used to map the
environment.

In conclusion, this paper has presented an efficient trajectory
planning algorithm for multiple non-holonomic mobile robots
in a cluttered environment. A prioritized trajectory optimiza-
tion method is introduced to plan paths based on priority
and later perform trajectory optimization methods. Finally, the
algorithm is tested on both simulation and real-world setups.

The paper “Suboptimal Variants of the Conflict-Based
Search Algorithm for the Multi-Agent Pathfinding Prob-
lem” [1] proposes several modifications to the Conflict-
Based Search (CBS) algorithm to improve its runtime per-
formance while still maintaining near-optimal solutions for
the Multi-Agent Pathfinding Problem (MAPF). The authors
start by introducing the MAPF problem, which involves
finding collision-free paths for multiple agents in a shared
environment. They then present the CBS algorithm, which is a
two-level approach that first generates a conflict-based search
tree and then solves the conflicts using various techniques.
The authors proposed methods are Enhanced CBS, Bounded
Suboptimal CBS, and Greedy-CBS (GCBS): Suboptimal CBS.
The Greedy CBS (GCBS) algorithm employs the same frame-
work as CBS, but offers greater flexibility in both the high-
level and low-level searches, prioritizing the expansion of
nodes that have a higher likelihood of quickly producing a
valid solution, even if it is suboptimal. For the BCBS variant,
the authors suggest applying both levels of CBS as focal
search, in the high level we can apply the focal search to
the nodes based on the cost of the node and the number of

hops towards the goal as a heuristic. The low level focuses
more on applying the focal search on a consistent single agent
path, based on the A* heuristic f(n)=g(n)+h(n) and a number
of hops towards the partial path up to a node as heuristic.
The ECBS algorithm generates a CT node and the low-level
search returns two values to the high level search the cost
of node and the minimum lower bound of all nodes in the
OPEN list of the high-level search. ECBS has an advantage
over BCBS in that it offers greater flexibility in the high-level
search, while allowing the low-level search to have the same
level of flexibility as BCBS. Specifically, ECBS provides extra
flexibility in the high-level search when the low-level search
produces low-cost solutions, which is indicated by the lower
bound value being close to the node’s actual cost.

The paper “Efficient Multi-Agent Trajectory Planning with
Feasibility Guarantee [2] using Relative Bernstein Polyno-
mial” proposes a new approach for solving the Multi-Agent
Trajectory Planning (MATP) problem using Relative Bernstein
Polynomials (RBP). The authors start by introducing the
MATP problem, which involves finding collision-free trajec-
tories for multiple agents in a shared environment. They then
present the RBP method, which is used to generate smooth and
continuous trajectories that satisfy velocity and acceleration
constraints. For the trajectory formation of each quadrotor
with the given start and goal point, the authors use Bernstein
polynomial to represent it in M segment form that contains
all the control points of the quadrotor , as shown in equation
below

>oheo G kB (1)t € [To, T

i ZZ:O Cé,kBk',n (12) t € [T, T5]
pit) = q. .

EZ:O Cl}v[,kBk,n (7'1\4) te [TM—l, TM]

The jerks are minimized based on the objective function, and
the constraints for the maximum velocity and acceleration are
define by the convex constraints. THe authors deal with the
obstacle avoidance by satisfying the condition by Minkowski
sum of the obstacle configuration space and the control points
of the each quadrotor (As shown in the below equation).

pz(t) &) Czbs C ./—", t e [To,Tjw]

The author generates a initial trajectory using the ECBS based
variant of the MAPF family. After the initial trajecotry is
generated then they build a safety flight corridor for all the
quadrotors using RBP’s convex hull property for control points
of each quadrotor. Then they optimize the trajectory by an effi-
cient sequential optimization method by using dummy agents.
The authors proposed algorithm performs better than the SCP
based methods with 100% collision avoidance guarantee and
in computation and conversion.

“Multi-Agent Path Finding with Mutex Propagation™ [J3] is
a research paper that proposes a new approach for solving
the Multi-Agent Path Finding (MAPF) problem using Mu-
tex Propagation. The paper starts by introducing the MAPF
problem and discussing its importance in various real-world

applications. It then presents the existing approaches to solv-
ing the MAPF problem and highlights their limitations. The
authors then propose the use of Mutex Propagation as a new
approach to solving the MAPF problem. The authors divide
the given goal and path graph into an MDD tree structure and
then find the mutex node in order to check the cardinal conflict
condition, later these nodes are used as constraints, to obtain
an optimal solution.

The paper "Risk-DTRRT-Based Optimal Motion Planning
Algorithm for Mobile Robots” proposes a method to improve
the quality of the path generated using time-based RRT in
a dynamic environment. The algorithm is proven to return
a dynamically feasible homotopy optimal path for the RRT-
generated path. The algorithm is divided into two major com-
ponents, a LoS control checking algorithm which calculated
the dynamically feasible line of sight path and a rewiring
algorithm which uses the LoS algorithm to calculate the
homotopy optimal path. We have used a similar algorithm to
find the homotopy optimal path for the A* path calculated
using CBS. This algorithm is fast and can be used in place of
optimization algorithms.

ITII. IMPLEMENATIONS
A. Prioritized CBS based A* using LoS

Firstly, we use a conflict-based search (CBS) algorithm as a
multi-robot discrete path planner. This algorithm is capable of
considering the conflicting trajectories of multiple robots and
generating paths that can avoid collisions with obstacles and
other robots.

Secondly, we enforce additional constraints on the generated
paths to ensure non-holonomic feasibility, which means that
the paths adhere to the motion constraints of non-holonomic
mobile robots, such as differential drive robots. To achieve
this, we apply a line of sight (LOS) control checking algorithm
that ensures the generated paths can be realistically followed
by the non-holonomic robots without violating their motion
constraints.

One way to satisfy non-holonomic and heuristic constraints
in a given problem is by utilizing smoothing algorithms such
as the Biezer curve and B Spline approach. These algorithms
can help to reduce the roughness of the solution trajectory
while maintaining the required constraints. The Biezer curve
is a mathematical function that smoothly connects two or more
points in a curve, while the B Spline approach uses a set of
basis functions to approximate the shape of the curve.

B. Prioritized CBS based A* with motion primitives.

Our objective is to propose a motion planning strategy that
can generate optimal trajectories for multiple mobile robots
while taking into account their safety and dynamic feasibility.
Our approach relies on the implementation of a conflict-based
search (CBS) algorithm using A* search. Specifically, we
prioritize the checking of the validity of each node with the
path of the other agents, while accounting for time constraints.

At each iteration of the CBS algorithm, we select the
next node based on eight motion primitives, which are the

Algorithm 1 Prioritized CBS based A* using LoS
Input: The map, start nodes, and end nodes of all the robots
in priority order
QOutput: Non-holonomic constraint feasible trajectories
computed_paths = []
for i in all robots do
inatial_path = CBS_A*_path(start[i],end[i],computed_paths)
possible_start = start][i
next_end = 0
Ligst =0
while end[i] not reached do
L = LoS_path(possible_start, initial_path[next_end))
if L is collision free then
next_end = initial_path[next_end + 1]
Ligst = L
else
actual_path.append(L;qst)
possible_start = initial_path[nextend — 1]
end if
end while
actual_path.append(L;qst)
computed_paths.append(actual_path)
end for
Return computed_paths

different types of movement that the robot can perform, and
take into consideration the non-holonomic constraints. We then
calculate the cost of the child node and parent node and push
the result into the queue.

Overall, this approach aims to find the optimal trajectory
for each mobile robot while ensuring its safety and avoiding
any potential collisions with other robots or obstacles. By
considering the dynamic feasibility of each motion, we can
generate trajectories that are not only safe but also efficient
and effective in achieving the goals of the robots.

Algorithm 2 Prioritized CBS based A* with motion primitives
Input: The map, start nodes, end nodes of all the robots in
priority order, and motion primitives

Output: Non-holonomic constraint feasible trajectories
computed_paths = []

for i in all robots do

path = get_path(start[i],end[i],computed_paths,primitives)
computed_paths.append(path)

end for

Return computed_paths

C. Heuristic CBS with motion primitives

This algorithm is a variation of a multi-agent path plan-
ning algorithm, which aims to find collision-free paths for
multiple agents (robots) to reach their respective goals. The
first step is to discretize the configuration space by dividing
the environment or workspace into a set of discrete points.
This is typically done to simplify the problem and reduce the

complexity of the search space. This can be done in various
ways, such as using a grid or Voronoi diagram where each
point in the set represents a possible location for an agent to
occupy. The next step is to calculate the path of costs: For each
agent, the algorithm then calculates the cost of traveling from
each possible location (discrete point) to its goal. This is done
using a breadth-first search (BFS) algorithm, which explores
all possible paths from the starting location to the goal, while
keeping track of the cost of each path. In addition to BFS,
motion primitives may be used to calculate the path costs,
which are essentially pre-defined sequences of movements that
an agent can perform. The last step is to do Greedy Path
selection which involves the calculation of path costs have
been calculated for all agents, the algorithm then selects a path
for each agent that minimizes the sum of BFS cost and distance
heuristic with all the other agents. The distance heuristic is a
measure of the distance between the current location of an
agent and its goal. The aim is to find a path that is both
collision-free and efficient in terms of time and distance.

Algorithm 3 Heuristic CBS with motion primitives
Input: The map, start nodes, end nodes of all the robots,
and motion primitives
Output: Non-holonomic constraint feasible trajectories
goal_distance = ||
for i in all robots do
distance_map = BFS_costs(end|[i], map, primitives)
goal_distance.append(distance_map)
end for
heuristic_function =
reached = False
computed_paths =[]
current_pose = start
while not reached do
priority = goal_distance[current_pose]
robot_order = argsort(priority)
for i in robot_order do
next_pose = Greedy_N H (i, current_pose, Heuristic)
current_pose[i| = next_pose
end for
reached = check_reached(end, current_pose)
computed_paths.append(actual_path)
end while
Return computed_paths

8 3
(distance)

IV. EXPERIMENTAL RESULTS

In this section we have implemented a baseline CBS al-
gorithm for multi-agent path planning from scratch, videos
for the implementation could be found on our youtube
presentation |[Youtube Link]. We have attached images
(FigI|Figl|Fig3) of the multi-agent robot path that we obtain
from our code.

Further, we have implemented CBS based A* algorithm
with motion primitives that satisfy the non-holonomic con-
straints for multi-agents (Figd]Fig5]Fig6).

_
H B
N

| |

A
L]

Fig. 4: Non holonomic path for 2 agents.

Lastly, we have implemented Heuristic based online CBS
using Motion Primitives for non-holonomic mobile robots
Figl7|Figg).

We use the ARGoS Fig9| as experimental platform to
visualize our results. It is a multi-robot physics simulator that
is lightweight and user-friendly, making it easy to analyze
algorithms on multiple robots. The platform allows users to
model the number and type of robots, simulation world, and
sensors using an XML file. The robot controller and loop
function file contains the control algorithms that produce the
trajectory and set the respective velocities for each robot.

Our evaluation for the path lengths FigI0] conveys that

https://youtu.be/HCzZ_hJyARg

Fig. 9: ARGoS simulation setup.

difference in computation time is dependent on the map size.

52 Path Length in 50x50 grid

I Heuristic
50 I Prioritized

48

46

s
>

Fig. 6: Non holonomic path for 6 agents.

Path Length
5

@
&

36

34

b4 32
30
2 3 4
No of agents
Fig. 10: Path length comparison plot.
Computation time in 50x50 grid

I Heuristic
I Prioritized

Fig. 7: Non holonomic hueristic based path for 3 agents.

7
6
5
4
2 3 4
No of agents

Fig. 11: Time computation plots.

Computation Time

Fig. 8: Non holonomic hueristic based path for 4 agents.
V. CONCLUSION AND LIMITATIONS

the heuristic paths are heavily dependent on the heuristic We have successfully implemented the A* based prioritized
choice and tuning, and can outperform the priority algorithm. algorithm with motion primitives for 2,4,6 agents. We have
Heuristic algorithm takes more computation time than the also presented the implementation of A* based heuristic
prioritized algorithms as shown in Figl1] the growth of the algorithm for multiple agents. The Heuristic-based algorithm

serves as evidence of the limitations of the current state-of-the-
art (SOTA) priority-based algorithm. While the priority-based
algorithm is scalable, it falls short in terms of optimality. On
the other hand, the Heuristic-based algorithm, while scalable,
cannot guarantee completeness, and is only approximately
optimal. These shortcomings have highlighted the need for
continued research and development to create an algorithm
that is both scalable and optimal, while also guaranteeing
completeness.

VI. SCHEDULE (TASK DIVISION AND TIMELINE)

In the following table we have added our current work
distribution and estimate of future work and distribution (Refer
TABLE [I).

[6] Choi, J. W., Curry, R., Elkaim, G. (2008, October). Path planning
based on bézier curve for autonomous ground vehicles. In Advances
in Electrical and Electronics Engineering-IAENG Special Edition of the
World Congress on Engineering and Computer Science 2008 (pp. 158-
166). IEEE.

[71 W. Chi, C. Wang, J. Wang and M. Q. . -H. Meng, "Risk-DTRRT-
Based Optimal Motion Planning Algorithm for Mobile Robots,” in IEEE
Transactions on Automation Science and Engineering, vol. 16, no. 3, pp.
1271-1288, July 2019, doi: 10.1109/TASE.2018.2877963.

TABLE I
Timeline Task Task allocation
Week 1 Literature Review and concept understanding. | Aadesh, Om, Vishrut
Week 2 theratqre Review and State of the art Aadesh, Om, Vishrut
simulation setup and code study.
Week 3 State of the art seFup error issues Oom
and new gazebo simulation setup.
Week 3 Code implementation and visualizer setup Vishrut, Aadesh
Week 4 Proposal. slides, Video creation Aadesh, Om, Vishrut
Week 5 Spring break
Week 6 Exploration of the optimization Aadesh, Om, Vishrut
and smoothening methods.
Week 6 Und.erstan.d ne Aadesh
motion primitives.
Week 7 Debugging the ROS simulation errors Om,Aadesh
Week 7 Exploration of the optimization Aadesh, Vishrut
and smoothening method
Week 6/7 Setting up environment in ARGoS Om, Vishrut
A* implementation with o
Week 8/9 motion primitives for MAPE. Aadesh
Week 8/9 ARGoS simulation robot implementation Om
Week 8/9 Implementation of optimization technique. Vishrut
Week 9 Working and designing the heuristic function. | Om, Vishrut
Week 10/11 ARGoS code implementation with the new Aadesh, Vishrut, Om
smoothen curve for 3 Robots
Week 12/13 | Final testing and simulation implementation Aadesh, Vishrut, Om
Week 14 Final report and Documentation Aadesh, Vishrut, Om

REFERENCES

[1] Barer, Max, et al. "Suboptimal variants of the conflict-based search
algorithm for the multi-agent pathfinding problem.” Proceedings of the
International Symposium on Combinatorial Search. Vol. 5. No. 1. 2014.
434-440, doi: 10.1109/ICRA40945.2020.9197162.

[2] J. Park, J. Kim, I. Jang and H. J. Kim, “Efficient Multi-Agent
Trajectory Planning with Feasibility Guarantee using Relative Bern-
stein Polynomial,” 2020 IEEE International Conference on Robotics
and Automation (ICRA), Paris, France, 2020, pp. 434-440, doi:
10.1109/ICRA40945.2020.9197162.

[3] Zhang, H., Li, J., Surynek, P, Kumar, T. S., Koenig, S. (2022). Multi-
agent path finding with mutex propagation. Artificial Intelligence, 311,
103766.

[4] J. Li, M. Ran and L. Xie, “Efficient Trajectory Planning for Multiple
Non-Holonomic Mobile Robots via Prioritized Trajectory Optimization,”
in IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 405-412,
April 2021, doi: 10.1109/LRA.2020.3044834.

[5] W. Ding, W. Gao, K. Wang and S. Shen, "An Efficient B-Spline-
Based Kinodynamic Replanning Framework for Quadrotors,” in IEEE
Transactions on Robotics, vol. 35, no. 6, pp. 1287-1306, Dec. 2019, doi:
10.1109/TR0O.2019.2926390.

	Introduction
	Literature Review
	Implemenations
	Prioritized CBS based A* using LoS
	Prioritized CBS based A* with motion primitives.
	Heuristic CBS with motion primitives

	Experimental Results
	Conclusion and Limitations
	Schedule (Task Division and Timeline)
	References

