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Abstract—We describe a surgical system that autonomously
searches for tumors and dynamically displays a computer graphic
model of them super-imposed on the organ (or in our case,
phantom). Once localized, the phantom is tracked in real time and
augmented with overlaid stiffness information in 3D. We believe
that such a system has the potential to quickly reveal the location
and shape of tumors, and the visual overlay will reduce the
cognitive overload of the surgeon. The contribution of this paper
is the integration of disparate technologies to achieve this system.
In fact, to the best of our knowledge, our approach is one of the
first to incorporate state-of-the-art methods in registration, force
sensing and tumor localization into a unified surgical system.
First, the preoperative model is registered to the intra-operative
scene using a Bingham distribution-based filtering approach. An
active level set estimation is then used to find the location and
shape of the tumors. We use a recently developed miniature
force sensor to perform the palpation. The estimated stiffness
map is then dynamically overlaid onto the registered preoperative
model of the organ. We demonstrate the efficacy of our system
by performing experiments on a phantom prostate model and
other silicone organs with embedded stiff inclusions using the da
Vinci research kit (dVRK).

I. INTRODUCTION

Robot-assisted minimally invasive surgeries (RMIS) are
becoming increasingly popular as they provide increased
dexterity and control to the surgeon while also reducing
trauma, blood loss and hospital stays for the patient [23].
These devices are typically teleoperated by the surgeons using
visual feedback from stereo-cameras, but without any haptic
feedback. This can result in the surgeon relying only on vision
to identify tumors by mentally forming the correspondence
between intra-operative view and pre-operative images such
as CT scans/MRI, which can be cognitively demanding.

Automation of simple but laborious surgical sub-tasks and
presenting critical information back to the surgeon in an
intuitive manner has the potential to reduce the cognitive over-
loading and mental fatigue of surgeons [8]. This work lever-
ages the recent advances in force sensing technologies [15],
tumor localization strategies [1, 2, 28], online registration
techniques [32, 33, 34] and augmented reality [24] to automate
the task of tumor localization and dynamically overlay the
information on top of intraoperative view of the anatomy.

While there are works in literature that deal with force
sensing [25, 37], force-based exploration [29, 31, 39, 40],
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Fig. 1. Experimental setup showing the dVRK robot with a miniature force
sensor attached to the end-effector. A stereo camera overlooks the workspace
of the robot. A phantom prostate with embedded stiff inclusion is placed in
the workspace of the robot.

tumor localization [1, 2, 5, 7, 8, 28] and graphical image
overlays [30, 35, 36, 41], there is a gap in literature when
it comes to systems that deal with all these issues at the same
time. For example, Yamamoto et al. [41] deal with tumor
localization and visual overlay, but they assume the registration
is known, the organ is flat and place the organ on a force
sensing plate, which is not representative of a realistic surgical
scenario. On the other hand, Garg et. al. [8] use a palpation
probe mounted on a da Vinci research kit (dVRK) tool (This
probe was originally developed by McKinley et. al. [18]).
However, they do not deal with registering the organ or
visual overlay of the estimated stiffness map. The work of
Puangmali et. al. [25] (and many others as noted by Ti-
wana et. al. [37] in their review paper) deal with development
of miniature force sensing technologies for minimally invasive
surgeries, but they do not discuss strategies to palpate or
ways to perform image overlay of the estimated stiffness
map. Ayvali et. al. [1, 2] and Salman et. al. [28] develop
techniques to smartly palpate a tissue and search for tumors



with a small number of probings. The work of Chalasani et. al.
[5, 7] provides an alternate way of palpation by probing
along continuous trajectories. However, these works do not
deal with graphically overlaying the estimated stiffness map
and also use an ad hoc force sensing set up consisting of a
plate mounted on a commercial force sensor. The work of
Sanan et. al. [29] and Srivatsan et. al. [31] uses force-based
exploration for registration and stiffness estimation, but they
do not perform image overlay and spend a lot of time probing
the entire organ in a raster-scan pattern. Finally the work
of Wang et. al. [39, 40] uses force controlled exploration to
perform deformable registration to preoperative model of the
organ, but they do not estimate the stiffness of the tissue or
perform graphical image overlay. The work in this chapter
aims to bridge these shortcomings and present a unified system
capable of addressing all the above mentioned issues at the
same time.

The system of Naidu et. al. [21] comes closest to our work.
They use a custom designed tactile probe (developed by Tre-
jos et. al. [38]) to find tumors and visually overlay the tactile
image along with the ultrasound images. The wide tactile array
that they use, allows for imaging sections of the organ instead
of obtaining discrete measurements, as in our case. This
eliminates their need to develop sophisticated tumor search
algorithms. However, as acknowledged by Trejos et. al. [38],
it is not clear as to how their system would perform when using
non-flat organs such as prostates and kidneys; since the tactile
array cannot deform and confirm to the shape of the organ.
Without performing registration, the image overlay would also
be affected on non-flat organs.

The framework presented in this paper is robot agnostic and
modular in nature. We demonstrate the efficacy of the system
by performing autonomous tumor localization on a phantom
prostate model and other custom fabricated flat silicone organs
with embedded tumors using the dVRK platform [14] (see
Fig. 1). There are two reasons for choosing the dVRK for
demonstration – (1) it is a good representation of a surgical
robot, (2) there are several research groups across the world
that use dVRK and we hope they will all benefit from the work
presented in this paper. A miniature force sensor mounted
at the tip of the dVRK needle driver tool (developed by
Li et. al. [15]) is used to sense the contact forces. An active tu-
mor search strategy developed by Salman et. al. [28] is used to
localize the tumor. The estimated stiffness map is overlaid on a
registered model of the anatomy and displayed in real-time on
a stereo viewer. The overall focus of this paper is to combine
the various state-of-the-art methods into a demonstrative sur-
gical system that would enable fast estimation of registration,
tumor search and graphical image overlay. A preliminary
version of this paper has appeared in [42]. We believe that
our contributions would be used in the software framework
being developed by our collaborators Chalasani et. al. [6] at
Johns Hopkins university and Vanderbilt university to provide
online CSA for surgical assistance.

II. RELATED WORK

A. Tumor search approaches

The recent developments in force sensors have also resulted
in a number of works that automate mapping of the surface of
the anatomy to reveal stiff inclusions. The different palpation
strategies commonly used are: discrete probing motion [1,
22, 31, 41], rolling motion [16], cycloidal motion [9] and
sinusoidal motion [5, 7]. Some of these works direct the robot
along a predefined path that scans the region of interest on
the organ [13, 31, 41], while others adaptively change the grid
resolution to increase palpation resolution around boundaries
of regions with high stiffness gradients [9, 22].

Over the last two years, Bayesian optimization-based meth-
ods have gained popularity [1, 2, 5, 7, 8]. These methods
model the stiffness map using a Gaussian process regression
(GPR) and reduce the exploration time by directing the robot
to stiff regions. While the objective of most prior works is
to find the high stiffness regions [1, 2, 8], recent work by
Salman et al. [28] on active search explicitly encodes finding
the location as well as the shape of the tumor as its objective.

B. Surgical registration and image overlay

There is a rich literature of image overlay for minimally
invasive surgeries [30], including some works on usage of aug-
mented reality in human-surgeries [17]. Often the image that is
overlaid is a segmented preoperative model, and it manually
placed in the intraoperative view [17, 35]. Very few works
such as those of Teber et. al. [36] and Haouchine et. al. [11],
deal with manual placement followed by automatic registration
of the organ models. There are a number of registration
techniques that have been developed for surgical applications;
the most popular one being iterative closest point (ICP) [3] and
its variants [27]. There also exist methods that deal with local
deformation caused by tool-tissue interaction [31] and global
deformation caused by organ shift, swelling, etc. [20, 40].

Probabilistic methods for registration have recently gained
attention as they are better at handling noise in the measure-
ments. Billings et al. [4] use a probabilistic matching criteria
for registration, while methods such as [19, 32, 34] ( and the
references therein) use Kalman filters to estimate the regis-
tration parameters. Recent work by our group reformulates
registration as a linear problem in the space of dual quaternions
and uses a Bingham filter and a Kalman filter to estimate the
rotation and translation respectively [33]. Such an approach
has been shown to produce more accurate and fast online
updates of the registration parameters.

While the above literature deals with registering preopera-
tive models onto an intraoperative scene, there is very little
literature that deals with overlaying stiffness maps on the
preoperative models and updating the maps in real-time as new
force sensing information is obtained. Real-time updates are
very important because they provide the surgeon a better sense
of what the robot has found and gives them insight into when
to stop the search algorithm which is a subjective decision,
as observed by Ayvali et. al. [2].The works of Yamamoto et



al. [41] and Naidu et al. [21] are exceptions and deal with
dynamic overlaying of the stiffness image, but only onto pre-
registered flat organs. Their approaches do not generalize to
the cases of non-flat organs such as kidneys or prostates that
we consider in this work.

C. Force sensing for surgical applications
The following survey papers report a number of devices that

measure contact forces [25, 37]. Some common drawbacks
with many existing devices are: difficulty to sterilize, high
cost, delicate components and lack of flexibility of form factor.
Recently, Li et. al. [15] have developed a miniature force
sensor that uses an array of thin-film force-sensitive resistors
(FSR) with embedded signal processing circuits. A diagram
of the sensor can be seen in Fig. 6(a). This sensor is light
weight, inexpensive, robust, and has a flexible form factor.

III. PROBLEM SETTING AND ASSUMPTIONS

We use an ELP stereo camera (model 1MP2CAM001) over-
looking the workspace of a dVRK [14]. A custom fabricated
prostate phantom (made using Ecoflex 00-10) as well as two
other flat silicone organs, all embedded with plastic pieces to
mimic stiff tumors, are used for experimental validation.

Given an a priori geometric model of an organ, the measure-
ments of the tool tip positions and associated contact forces,
and stereo-camera images of the intraoperative scene, our goal
is to (i) register the camera-frame, robot-frame and model-
frame to each other, (ii) estimate the stiffness distribution over
the organ’s surface, and (iii) overlay the estimated stiffness
distribution on the registered model of the organ and display
it back to the user.

We make the following assumptions in this work:
• The shape of the organ deforms only locally due to tool-

interaction.
• The tool-tip pose can be obtained accurately from the

robot kinematics.
• The forces applied by the tool are within the admissible

range (less than 10N) in which the organ only undergoes
a small deformation (less than 8mm) that allows it to
realize its undeformed state when the force is removed.

• The stiff inclusion is located relatively close to the tissue
surface, so that it can be detected by palpation.

IV. SYSTEM MODELING

Fig. 2 shows the flowchart of the entire system. Modules
such as camera calibration, model generation and registration
need to be run only once at the beginning of the experiment.
On the other hand, the tumor search, probing, and augmented
display modules are run in a loop until the user is satisfied with
the result and halts the process. While the system is largely
autonomous, user input is required in two steps: (i) Camera-
model registration, to select the organ of interest in the view
of the camera, (ii) selecting region of interest for stiffness
mapping. The modularity of the system allows the user to
choose any implementation for registration, force-sensing and
tumor localization. The important modules of our system are
discussed in detail in the following sections.

Fig. 2. Flowchart showing all the modular components of our system. Some of
the modules such as camera calibration, stereo reconstruction, model creation,
and camera-robot-model registrations are performed once before the start of
the experiment, while the other modules are constantly run for the duration
of the experiment.

A. Registering Camera and Robot Frames

The cameras are calibrated using standard ROS calibra-
tion [26]. The robot is fitted with a colored bead on its end
effector that can be easily segmented from the background by
hue, saturation, and value. Registration between the camera-
frame and the robot-frame is performed by the user through
a graphical user interface (GUI) that shows the left and right
camera images and has sliders representing color segmentation
parameters.

The robot is moved to a fixed set of six points. These
points are chosen to cover a substantial amount of the robot’s
workspace, stay within the field of view in the camera, and
not contain symmetries that would make registration difficult.
We chose to use only six points after experiments showed that
additional points failed to significantly decrease the root mean
squared error (RMSE), as shown in Table I. For each of the
points, we perform a series of actions.

First, we move the robot to the specified location, then we
process both the left and right images to find the centroid of

https://www.smooth-on.com/products/ecoflex-00-10/
http://wiki.ros.org/camera_calibration/Tutorials/StereoCalibration
http://wiki.ros.org/camera_calibration/Tutorials/StereoCalibration


TABLE I

Number of points 5 6 7 8 11 51

RMSE (mm) 2.71 2.37 2.84 3.01 2.82 2.85

the colored bead fitted to the robot. The centroid of the ball in
pixels is found as the center of the minimum enclosing circle
of the contour with the largest area. We repeat this for as
many frames as are received over ROS in one second (in our
case 15), and the centroid is then averaged over all frames to
reduce the effect of noise in the image. The centroid is drawn
onto both images in the GUI, allowing the user to evaluate
the accuracy of the centroid estimation. The pixel disparity is
calculated as the difference between the x coordinates of the
centroid in the left and right images. This disparity is fed into
a stereo-camera model that ROS provides, to calculate a 3D
point in the camera-frame.

Following this, we obtain six points in both the camera-
frame and the robot-frame (using the kinematics of the robot).
We use Horn’s method [12] to calculate the transformation T c

m

between the camera and the robot frames. This transformation
is saved to a file and the calculated RMSE is displayed to the
user. In addition, the robot’s current position is transformed
by the inverse of the calculated transformation and projected
back into the pixel space of both cameras. Circles are drawn
at these pixel positions in the left and right images in the GUI
so that the user can visually confirm that the registration is
successful and accurate.

B. Registering Camera and Preoperative Model Frames

The transformation between camera-frame and model-
frame, T c

m is estimated by registering the reconstructed point
cloud from stereo images with the preoperative model of
the organ. The intraoperative scene as viewed by the stereo
cameras is as shown in the top of Fig. 3. A user manually
selects the region containing the organ of interest. Following
this the user can also further refine the selection using a graph
cut-based image segmentation.

A Bingham distribution-based filtering approach is used to
automatically register the stereo point cloud to the preoperative
model [33, 34]. The mean time taken to register is 2s and the
RMS error is 1.5mm. The center row in Fig. 3 shows the
registered model of the organ overlaid on the stereo views.
Note how the pose of the registered model accurately matches
the pose of the organ. In the same figure we also show the
model of the tumor in the registered view to highlight how
accurately the stiffness map estimates the location of the tumor
(see bottom row of Fig. 3)

We also augmented the static grab-cut based segmentation
using an automatic traveling mask. Once we are satisfied that
the model is roughly registered to the object, we switch from
the static graph-cut mask to the traveling mask. Using the
same rendering engine used in the GUI, a z-depth buffer is
rendered from the camera’s view of the model. This depth
buffer is scaled from 0 to 255 with 0 representing the pixel

Fig. 3. Top row: Original left and right camera images. Middle row:
Camera images with registered prostate model shown in semi-transparent
blue. The tumor model is also shown to allow us to compare our stiffness
mapping result. Bottom row: The robot probes the organ and records force-
displacement measurements. The estimated stiffness map is then augmented
on the registered model in this figure. Dark blue regions show high stiffness.
Note that the stiffness map reveals the location and shape of the tumor.

farthest from the camera and 255 representing the closest.
Using this buffer, we create a new mask for our camera image
by masking out all pixels with a depth of zero, effectively
creating a cutout of our rendered model. Because we render the
depth buffer every time the model’s estimated transformation
is changed, we create an image mask that moves along with
our model. Results using this traveling mask can be seen
in Fig. 4. Tracking is maintained even after an disturbance
moves the silicone prostate out from under the tracked model
by approximately 4cm. Although extreme movements will
certainly make our system lose tracking, the system is robust to
small movements that may arise due to breathing, heart beat as
well as due to interactive forces during palpation. To the best
of our knowledge the prior works on probing-based stiffness
mapping assume the organ is rigidly clamped with respect to
the robot and ignore movement of the organ [7, 21, 31, 41].

C. Tumor Search and Stiffness Mapping

The problem of tumor search is often posed as a problem
of stiffness mapping, where the stiffness of each point on a
certain organ is estimated, and regions with stiffness higher
than a certain threshold are considered as regions of interest
(tumors, arteries, etc.). The framework that we use for local-
izing tumors utilizes Gaussian processes (GP) to model the
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Fig. 4. Registration results on a moving phantom prostate shown at three different times. Note the large disturbance at time (b) caused by applying an external
force to the organ and the recovered tracking at time (c).

stiffness distribution combined with a GP-based acquisition
function to direct where to sample next for efficient and fast
tumor localization. This is described in Fig. 5.

By using GP, we assume a smooth change in the stiffness
distribution across the organ. Since every point on the organ’s
surface can be uniquely mapped to a 2D grid, the domain
of search used is X ⊂ IR2. The measured force and position
after probing the organ by the robot at x provides the stiffness
estimation represented by y.

The problem of finding the location and shape of the
stiff inclusions can be modeled as an optimization problem.
However, an exact functional form for such an optimization
is not available in reality. Hence, we maintain a probabilistic
belief about the stiffness distribution and define a so called
“acquisition function”, ξacq , to determine where to sample
next. This acquisition function can be specified in various ways
and thus our framework is flexible in terms of the choice of
this acquisition function that is being optimized. Prior works
have considered various choices for the acquisition functions
such as expectation improvement (EI) [1, 2], upper confidence
bound (UCB) [8], uncertainty sampling (UNC), active area

search (AAS) and active level set estimation (LSE) [28].
While our system is flexible to the choice of acquisition

function, in this work we demonstrate tumor localization using
LSE. LSE determines the set of points, for which an unknown
function (stiffness map in our case) takes value above or below
some given threshold level h. The mean and covariance of the
GP can be used to define a confidence interval,

Qt(x) =
[
µt(x)± β1/2σt(x)

]
(1)

for each point x ∈ X̄ . Furthermore, a confidence region Ct

which results from intersecting successive confidence intervals
can be defined as,

Ct(x) =

t⋂
i=1

Qi(x). (2)

LSE then defines a measure of classification ambiguity at(x)
defined as,

at(x) = min {max(Ct(x))− h, h−min(Ct(x))} . (3)

LSE chooses sequentially queries (probes) at x∗ such that,

x∗ = argmax
x∈X

at(x). (4)



Fig. 5. An expanded flowchart of the “Tumor search” block shown in Fig. 2
.

For details on how to select the parameter h, we refer the
reader to the work of Gotovos et al. [10].

D. Probing and Force Sensing

We affixed a miniaturized Tri-axial sensor developed in
our prior work [15] onto the needle driver tool for the
dVRK to provide contact force measurements (see Fig. 1).
The force sensor is a Force-Sensitive-Resistor (FSR) based
force-to-voltage transducer operating in thru-mode electrodes
configuration. The design combines FSR array with a center
mounted pre-load mechanical structure to provide a highly
responsive measurement of contacting force and direction of
the force vector. In this experiment, we electrically bridged
the four sensing array elements on the force sensor, to pro-
vide improved sensitive force measurement along the normal
direction of the sensor, since the dVRK can be accurately
oriented to probe along the local surface normal. In addition,
we implemented online signal processing software in the
sensor embedded controller, for analog signal amplification,
filtering, automatic self-calibration, which is crucial step to
improve sensor performance when using inexpensive force
sensing materials such as 3M Velostat film from Adafruit.

First, the robot is commanded to a safe position p1 which
is at a known safe height zsafe as shown in Fig. 6(c). The
robot is then commanded to move to position p2 which is at
an estimated distance λ from the desired probing point p0,
along the normal to the surface at p0, n (see Fig. 6(c)). While
maintaining its orientation, the tool is commanded to move
to position p3 = p2 − (λ + dmax)n. The force and position
data are constantly recorded as the robot moves from p2 to
p3. When the force sensor contacts the tissue surface, if the

contact force exceeds a set threshold Fmax or if the probe
penetrates more than a set depth dmax, the robot is no longer
moved. This ensures that the probing does not hurt the patient
or cause any damage to the robot. Following this we retract the
robot to position p2 and then p1. Note that we do not record
force and displacement data during the retraction process.

Next the recorded data is treated as input to the stiffness
mapping algorithm similar to [31]. There are two important
steps of this algorithm: (i) baseline removal, (ii) stiffness
calculation. Ideally, the force sensor reading should be zero
when there is no contact between force sensor and the interest
area. However, in reality there is always a small residue in the
sensor readings even when there is no contact. Thus we find
the mean sensor output value when the probe is at p2 and then
subtract all the subsequent measurements from this baseline
force. For stiffness calculation, we use a standard RANSAC
algorithm to find the best fit line between the y-axis (force
sensor data) and x-axis (displacement data). As a result, the
calculated regression coefficient indicates the changing rate
of the contact force respect to a unit displacement, which
can be used as the best approximation of stiffness value (see
Fig. 6(b)). Fig. 7 shows the nearly linear variation of force
with displacement, justifying the use of slope of the best fit
line as an approximation for the stiffness.

E. Dynamic Image Overlay

The rendering of the overlays is done using the Visualization
Toolkit (VTK). Two virtual 3D cameras are created to match
the real cameras using the results of camera calibration. The
pre-operative model is placed in virtual 3D space according
to the camera-to-organ registration, T c

m, and rendered as a
polygonal mesh from the perspective of each camera. These
two renders are overlaid onto live video from the left and
right camera feeds as their backgrounds. These renderings are
displayed in a GUI divided into three tabs. The first tab is
for registration, which overlays the pre-operative model as
described above and additionally allows the user to mask
and segment the point cloud as described in Sec. IV-B. It
also provides buttons to start and stop model registration. The
second tab allows the user to select a region of interest (ROI)
defined in a 2D UV texture map that represents a correspon-
dence between pixels on a 2D image to 3D coordinates on the
surface of the pre-operative model (see Fig. 7(c)). The third
tab overlays the pre-operative model over the camera feeds
and allows the user to set the opacity of the overlay using a
slider at the bottom of the window.

In addition, the renderings in the third tab add a texture
to the rendered model. For this texture, the results of the
tumor search are turned into a heat-map image representing
relative stiffness in a user-specified region of interest (ROI)
(see Fig. 7(c)). This ROI is defined in 2D UV texture
coordinates that represent a correspondence between pixels
on a 2D image to 3D coordinates on the surface of the
polygonal mesh. The heat-map image is broadcast over ROS
and overlaid onto the pre-operative model’s 2D texture image
resulting in dark marks in high-stiffness areas while preserving

https://www.adafruit.com/product/1361
https://www.vtk.org/
https://www.vtk.org/
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Fig. 6. (a) The FSR sensor that we use in this paper, was developed by Li et al. [15]. (b) An expanded flowchart of the “Probing” block shown in Fig. 2.
(c) The various steps taken to probe a desired point along a desired normal direction as provided by the tumor search module.

A

B

Fig. 7. Force magnitude vs displacement for two sample points A and B on
the surface of the organ. RANSAC is used to find the best-fit line and the
slope gives us an estimate of the stiffness at the probed location. The circular
2D space forms a one-to-one mapping with the 3D surface of the organ. The
green circle represents the user-defined ROI where stiffness map is estimated.
Point A is located in on a stiff region, while B is located on a soft region.

texture details found in the pre-operative model’s original
texture (see Fig. 7(c)). This 2D texture is then applied to the
polygonal mesh using the UV map, resulting in a 3D overlay
of the stiffness map onto the video feed from each camera.
Fig. 8 shows the stiffness maps at various stages of probing,
dynamically overlaid on the registered model of the organ.
Note that the stiffness map clearly reveals the location and
shape of the tumor which is shown in the middle row of Fig. 3.

V. EXPERIMENTS AND VALIDATION

In this section, we validate our system through experimenta-
tion on various phantom models. In addition to the experiments
performed on the silicone prostate phantom, an experiment

(a) (b) (c)

Fig. 8. The figures show the augmented stiffness map at various stages
of probing. The high stiffness regions are shown in darker shades of blue,
while the low stiffness regions are in lighter shades of blue.(a) Result after 4
probings, (b) result after 18 probings, (c) result after 36 probings.

was performed on a custom fabricated flat silicone organ
embedded with plastic inclusions to mimic stiff tumors. We
used the dVRK robot with the organ placed on a force sensing
plate fitted with a commercial force sensor created by ATI to
generate the ground truth stiffness maps.

Upon generating the ground truth stiffness maps using a
raster scan pattern with a high density of probed points,
the silicone organs were registered and probed using the
registration and search methods described in Sec IV. It is worth
noting, that unlike Yamamoto et. al. [41], we do not assume
the flat organ is pre-registered. We estimate the registration
from the stereo-camera and use the estimated registration for
the overlay. Also the force sensing plate is only for ground
truth stiffness mapping. For the actual experiments, we use
the miniature force sensor shown in Fig. 6(a). The resulting
stiffness maps, as well as a comparison of how the maps
appear when overlaid in our GUI, can be seen in Fig. 9 and
10. These figures show that our system is able to capture the
position and size of the tumors with far fewer probed points
in a fraction of the time taken to generate the dense stiffness
map1. Fig. 10(e) and (f) show the front and back view of
the phantom prostate with the overlaid image of the estimated

1The experiments with our system took a total of 3 minutes to execute as
opposed to the raster scan that took upwards of 90 minutes.

http://www.ati-ia.com/index.aspx


Fig. 9. Experiments on the flat silicone organ. (a) The ground truth stiffness
map. (b) The stiffness map as estimated by our system. The probed locations
are shown by blue dots. (c) The ground truth stiffness map overlaid on top
of the phantom organ. (d) The estimated stiffness map overlaid on top of the
phantom organ. The stiffness maps are shown in the space of the UV map.
The x and y range for ground truth and estimated stiffness maps are the same.

TABLE II
ACCURACY, RECALL AND PRECISION OF ESTIMATED STIFFNESS MAPS

Accuracy (%) Recall (%) Precision (%)
Prostate 98.08 82.04 85.77
Flat organ 88.50 92.11 72.21

stiffness along with the surface normals at the locations the
organ was probed. As is evidenced by this figure, our system
is capable of probing and overlaying the image on a non-flat
highly curved organ.

Table II shows the precision, accuracy and recall of the
estimated stiffness maps when compared to the ground truth.
Precision, accuracy and recall are popular metrics to compare
performance of regions-of-interest detection problems and
have been used to compare stiffness maps in literature [28].
The results show that the shape and location of tumor as
estimated by our approach is accurate and closely matches the
ground truth. Although the exact shape of the tumors is not
perfectly captured for the case of the flat organ, the resulting
map is more than enough to show the user where the tumors
are located. The RMS error in the stiffness estimation for the
prostate phantom is 18.71 N/m and for the flat organ is 40.09
N/m, which is sufficient for a surgeon to differentiate tumor
from tissue as noted by Chalasani et. al. [5, 7].

VI. DISCUSSIONS AND FUTURE WORK

In this paper, we presented a system that unifies autonomous
tumor search with augmented reality to quickly reveal the
shape and location of the tumors while visually overlaying
that information on the real organ. Our system is capable of
probing highly curved organs as well as tracking the movement
of the organ that may be caused by the forceful interaction.
This has the potential to reduce the cognitive overload of

Fig. 10. Experiments on the phantom prostate. (a) The ground truth stiffness
map. (b) The stiffness map as estimated by our system. The probed locations
are shown by blue dots. (c) The ground truth stiffness map overlaid on top
of the phantom organ. The stiffness maps are shown in the space of the UV
map. The x and y range for ground truth and estimated stiffness maps are the
same. (d) The estimated stiffness map overlaid on top of the phantom organ.
(e) and (f) show the front and back view respectively, of the prostate model
with an overlay of the estimated stiffness map. The surface normals at the
various probed locations are shown by the green arrows.

the surgeons and assist them during the surgery. Our system
demonstrates promising results in experimentation on phantom
silicone organs.

While we demonstrate the task of stiffness mapping in this
work, our system can be used to visually overlay pre-surgical
plans, ablation paths, annotate important landmarks, etc. to aid
the surgeon during the procedure. In our future work we plan
to account for large deformations of the organ and update
the model accordingly. We plan to utilize computationally
fast approaches to segment the dVRK tools from the images
and avoid any obstructions to the overlaid stiffness map.
Furthermore, as demonstrated by other researchers in this field,
we believe a hybrid force-position controller can result in more
accurate probing and hence better stiffness estimation. Finally,
we plan to perform experiments on ex-vivo organs and carry
user studies to asses the efficacy of the system in a realistic
surgical setting.

ACKNOWLEDGMENTS

This work has been funded through the National Robotics
Initiative by NSF grant IIS-1426655 and the Center for Ma-
chine Learning and Health.



REFERENCES

[1] Elif Ayvali, Rangaprasad Arun Srivatsan, Long Wang,
Rajarshi Roy, Nabil Simaan, and Howie Choset. Using
Bayesian Optimization to Guide Probing of a Flexible
Environment for Simultaneous Registration and Stiffness
Mapping. In Proceedings of the International Con-
ference on Robotics and Automation (ICRA), number
10.1109/ICRA.2016.7487225, pages 931–936, 2016.

[2] Elif Ayvali, Alexander Ansari, Long Wang, Nabil
Simaan, and Howie Choset. Utility-Guided Palpation
for Locating Tissue Abnormalities. IEEE Robotics and
Automation Letters, 2(2):864–871, 2017.

[3] Paul J Besl and Neil D McKay. Method for registration
of 3-D shapes. In Robotics-DL tentative, pages 586–606.
International Society for Optics and Photonics, 1992.

[4] Seth D Billings, Emad M Boctor, and Russell H Taylor.
Iterative most-likely point registration (IMLP): A robust
algorithm for computing optimal shape alignment. PloS
one, 10(3):e0117688, 2015.

[5] Preetham Chalasani, Long Wang, Rajarshi Roy, Nabil
Simaan, Russell H Taylor, and Marin Kobilarov. Con-
current nonparametric estimation of organ geometry and
tissue stiffness using continuous adaptive palpation. In
ICRA, pages 4164–4171. IEEE, 2016.

[6] Preetham Chalasani, Anton Deguet, Peter Kazanzides,
and Russell H Taylor. A Computational Framework for
Complementary Situational Awareness (CSA) in Surgical
Assistant Robots. In 2018 Second IEEE International
Conference on Robotic Computing (IRC), pages 9–16.
IEEE, 2018.

[7] Preetham Chalasani, Long Wang, Rashid Yasin, Nabil
Simaan, and Russell H Taylor. Preliminary Evaluation of
an Online Estimation Method for Organ Geometry and
Tissue Stiffness. IEEE Robotics and Automation Letters,
3(3):1816–1823, 2018.

[8] Animesh Garg, Siddarth Sen, Rishi Kapadia, Yiming
Jen, Stephen McKinley, Lauren Miller, and Ken Gold-
berg. Tumor localization using automated palpation
with gaussian process adaptive sampling. In proceedings
of International Conference on Automation Science and
Engineering (CASE), pages 194–200. IEEE, 2016.

[9] Roger E Goldman, Andrea Bajo, and Nabil Simaan.
Algorithms for autonomous exploration and estimation in
compliant environments. Robotica, 31(1):71–87, 2013.

[10] Alkis Gotovos, Nathalie Casati, Gregory Hitz, and An-
dreas Krause. Active learning for level set estimation. In
IJCAI, pages 1344–1350, 2013.

[11] Nazim Haouchine, Jeremie Dequidt, Igor Peterlik, Erwan
Kerrien, Marie-Odile Berger, and Stephane Cotin. To-
wards an accurate tracking of liver tumors for augmented
reality in robotic assisted surgery. In ICRA, pages 4121–
4126, 2014.

[12] Berthold KP Horn. Closed-form solution of absolute
orientation using unit quaternions. JOSA A, 4(4):629–
642, 1987.

[13] Robert D Howe, William J Peine, DA Kantarinis, and
Jae S Son. Remote palpation technology. IEEE Engi-
neering in Medicine and Biology Magazine, 14(3):318–
323, 1995.

[14] Peter Kazanzides, Zihan Chen, Anton Deguet, Gregory S
Fischer, Russell H Taylor, and Simon P DiMaio. An
open-source research kit for the da Vinci® Surgical
System. In ICRA, pages 6434–6439. IEEE, 2014.

[15] Lu Li, Bocheng Yu, Chen Yang, Prasad Vagdargi, Ran-
gaprasad Arun Srivatsan, and Howie Choset. Devel-
opment of an Inexpensive Tri-axial Force Sensor for
Minimally Invasive Surgery. In In proceedings of the
International Conference on Intelligent Robots and Sys-
tems (IROS). IEEE, 2017.

[16] Hongbin Liu, David P Noonan, Benjamin J Challacombe,
Prokar Dasgupta, Lakmal D Seneviratne, and Kaspar
Althoefer. Rolling mechanical imaging for tissue ab-
normality localization during minimally invasive surgery.
IEEE Transactions on Biomedical Engineering, 57:404–
414, 2010.

[17] Jacques Marescaux, Francesco Rubino, Mara Arenas, Di-
dier Mutter, and Luc Soler. Augmented-reality–assisted
laparoscopic adrenalectomy. Jama, 292(18):2211–2215,
2004.

[18] Stephen McKinley, Animesh Garg, Siddarth Sen, Rishi
Kapadia, Adithyavairavan Murali, Kirk Nichols, Susan
Lim, Sachin Patil, Pieter Abbeel, Allison M Okamura,
et al. A single-use haptic palpation probe for locating
subcutaneous blood vessels in robot-assisted minimally
invasive surgery. In proceedings of International Con-
ference on Automation Science and Engineering (CASE),
pages 1151–1158. IEEE, 2015.

[19] Mehdi Hedjazi Moghari and Purang Abolmaesumi.
Point-based rigid-body registration using an unscented
Kalman filter. IEEE Transactions on Medical Imaging,
26(12):1708–1728, 2007.

[20] A. Myronenko and Xubo Song. Point Set Registration:
Coherent Point Drift. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 32(12):2262–2275,
Dec 2010. ISSN 0162-8828. doi: 10.1109/TPAMI.2010.
46.

[21] Anish S Naidu, Michael D Naish, and Rajni V Patel. A
Breakthrough in Tumor Localization. IEEE Robotics &
Automation Magazine, 1070(9932/17), 2017.

[22] Kirk A Nichols and Allison M Okamura. Methods to
segment hard inclusions in soft tissue during autonomous
robotic palpation. IEEE Transactions on Robotics, 31(2):
344–354, 2015.

[23] Jaydeep Palep. Robotic assisted minimally invasive
surgery. Journal of Minimal Access Surgery, 5(1):1–7,
Jan 2009.

[24] Kartik Patath, Rangaprasad Arun Srivatsan, Nicolas Ze-
vallos, and Howie Choset. Dynamic Texture Mapping of
3D models for Stiffness Map Visualization. In Workshop
on Medical Imaging, IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2017.

http://ieeexplore.ieee.org/abstract/document/7487225/
http://ieeexplore.ieee.org/abstract/document/7487225/
http://ieeexplore.ieee.org/abstract/document/7487225/
http://ieeexplore.ieee.org/abstract/document/7487225/
http://ieeexplore.ieee.org/abstract/document/7827116/
http://ieeexplore.ieee.org/abstract/document/7827116/
http://eecs.vanderbilt.edu/courses/CS359/other_links/papers/1992_besl_mckay_ICP.pdf
http://eecs.vanderbilt.edu/courses/CS359/other_links/papers/1992_besl_mckay_ICP.pdf
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0117688
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0117688
http://ieeexplore.ieee.org/abstract/document/7487609/
http://ieeexplore.ieee.org/abstract/document/7487609/
http://ieeexplore.ieee.org/abstract/document/7487609/
https://ieeexplore.ieee.org/document/8329875/
https://ieeexplore.ieee.org/document/8329875/
https://ieeexplore.ieee.org/document/8329875/
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8279448
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8279448
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8279448
https://pdfs.semanticscholar.org/b3ee/924abbd204e29030703d219f53c54429738d.pdf
https://pdfs.semanticscholar.org/b3ee/924abbd204e29030703d219f53c54429738d.pdf
https://www.cambridge.org/core/journals/robotica/article/algorithms-for-autonomous-exploration-and-estimation-in-compliant-environments/6F13E2D79E99B95CEAF8691685157E2A
https://www.cambridge.org/core/journals/robotica/article/algorithms-for-autonomous-exploration-and-estimation-in-compliant-environments/6F13E2D79E99B95CEAF8691685157E2A
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/download/6707/6903
https://hal.archives-ouvertes.fr/file/index/docid/1003262/filename/output.pdf
https://hal.archives-ouvertes.fr/file/index/docid/1003262/filename/output.pdf
https://hal.archives-ouvertes.fr/file/index/docid/1003262/filename/output.pdf
https://www.researchgate.net/profile/Berthold_Horn/publication/230600780_Closed-Form_Solution_of_Absolute_Orientation_Using_Unit_Quaternions/links/0912f501d4191052ba000000/Closed-Form-Solution-of-Absolute-Orientation-Using-Unit-Quaternions.pdf
https://www.researchgate.net/profile/Berthold_Horn/publication/230600780_Closed-Form_Solution_of_Absolute_Orientation_Using_Unit_Quaternions/links/0912f501d4191052ba000000/Closed-Form-Solution-of-Absolute-Orientation-Using-Unit-Quaternions.pdf
https://pdfs.semanticscholar.org/f08a/7910b75504825866f96c8f2d454eda721d62.pdf
http://ai2-s2-pdfs.s3.amazonaws.com/cc50/8b51931151d4e4f26b2e43195186c6c176fa.pdf
http://ai2-s2-pdfs.s3.amazonaws.com/cc50/8b51931151d4e4f26b2e43195186c6c176fa.pdf
http://ai2-s2-pdfs.s3.amazonaws.com/cc50/8b51931151d4e4f26b2e43195186c6c176fa.pdf
http://biorobotics.ri.cmu.edu/papers/paperUploads/8359-1135.pdf
http://biorobotics.ri.cmu.edu/papers/paperUploads/8359-1135.pdf
http://biorobotics.ri.cmu.edu/papers/paperUploads/8359-1135.pdf
https://s3.amazonaws.com/academia.edu.documents/45934639/Rolling_Mechanical_Imaging_for_Tissue_Ab20160525-26781-1rgga3w.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1517471075&Signature=g9AY3zJMBStoPQAxkP7HYhJX5hw%3D&response-content-disposition=inline%3B%20filename%3DRolling_Mechanical_Imaging_for_Tissue_Ab.pdf
https://s3.amazonaws.com/academia.edu.documents/45934639/Rolling_Mechanical_Imaging_for_Tissue_Ab20160525-26781-1rgga3w.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1517471075&Signature=g9AY3zJMBStoPQAxkP7HYhJX5hw%3D&response-content-disposition=inline%3B%20filename%3DRolling_Mechanical_Imaging_for_Tissue_Ab.pdf
https://jamanetwork.com/journals/jama/article-abstract/199759?redirect=true
https://jamanetwork.com/journals/jama/article-abstract/199759?redirect=true
http://adithyamurali.com/docs/CASE2015_palpation.pdf
http://adithyamurali.com/docs/CASE2015_palpation.pdf
http://adithyamurali.com/docs/CASE2015_palpation.pdf
http://ieeexplore.ieee.org/abstract/document/4359030/
http://ieeexplore.ieee.org/abstract/document/4359030/
https://arxiv.org/pdf/0905.2635.pdf
https://arxiv.org/pdf/0905.2635.pdf
http://ieeexplore.ieee.org/document/7922537/
http://ieeexplore.ieee.org/document/7922537/
http://ieeexplore.ieee.org/abstract/document/7054550/
http://ieeexplore.ieee.org/abstract/document/7054550/
http://ieeexplore.ieee.org/abstract/document/7054550/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2699074/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2699074/
https://www.ri.cmu.edu/wp-content/uploads/2017/09/IROS_one_page_v4.pdf
https://www.ri.cmu.edu/wp-content/uploads/2017/09/IROS_one_page_v4.pdf


[25] Pinyo Puangmali, Kaspar Althoefer, Lakmal D Senevi-
ratne, Declan Murphy, and Prokar Dasgupta. State-of-
the-art in force and tactile sensing for minimally invasive
surgery. IEEE Sensors Journal, 8(4):371–381, 2008.

[26] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust,
Tully Foote, Jeremy Leibs, Rob Wheeler, and Andrew Y
Ng. ROS: an open-source Robot Operating System.
In ICRA workshop on open source software, volume 3,
page 5. Kobe, Japan, 2009.

[27] Szymon Rusinkiewicz and Marc Levoy. Efficient variants
of the ICP algorithm. In Proceedings of 3rd International
Conference on 3-D Digital Imaging and Modeling, pages
145–152. IEEE, 2001.

[28] Hadi Salman, Elif Ayvali, Rangaprasad Arun Srivatsan,
Yifei Ma, Nicolas Zevallos, Rashid Yasin, Long Wang,
Nabil Simaan, and Howie Choset. Trajectory-Optimized
Sensing for Active Search of Tissue Abnormalities in
Robotic Surgery. In proceedings of International Con-
ference on Robotics and Automation (ICRA). IEEE, 2018.

[29] Siddharth Sanan, Stephen Tully, Andrea Bajo, Nabil
Simaan, and Howie Choset. Simultaneous Compliance
and Registration Estimation for Robotic Surgery. In
Proceedings of the Robotics: Science and Systems Con-
ference, 2014.

[30] Jeffrey H Shuhaiber. Augmented reality in surgery.
Archives of surgery, 139(2):170–174, 2004.

[31] Rangaprasad Arun Srivatsan, Elif Ayvali, Long Wang,
Rajarshi Roy, Nabil Simaan, and Howie Choset. Com-
plementary Model Update: A Method for Simultaneous
Registration and Stiffness Mapping in Flexible Environ-
ments. In Proceedings of the International Conference on
Robotics and Automation (ICRA), pages 924–930, 2016.

[32] Rangaprasad Arun Srivatsan, Gillian T Rosen, Feroze D
Naina, and Howie Choset. Estimating SE(3) elements
using a dual quaternion based linear Kalman filter. In
Robotics : Science and Systems, 2016.

[33] Rangaprasad Arun Srivatsan, Mengyun Xu, Nicolas Ze-
vallos, and Howie Choset. Bingham Distribution-Based
Linear Filter for Online Pose Estimation. In Robotics :
Science and Systems (RSS), 2017.

[34] Rangaprasad Arun Srivatsan, Mengyun Xu, Nicolas Ze-
vallos, and Howie Choset. Probabilistic pose estimation
using a bingham distribution- based linear filter. The
International Journal of Robotics Research (IJRR), 2018.

[35] Li-Ming Su, Balazs P Vagvolgyi, Rahul Agarwal, Carol E
Reiley, Russell H Taylor, and Gregory D Hager. Aug-
mented reality during robot-assisted laparoscopic partial
nephrectomy: toward real-time 3D-CT to stereoscopic
video registration. Urology, 73(4):896–900, 2009.

[36] Dogu Teber, Selcuk Guven, Tobias Simpfendörfer, Math-
ias Baumhauer, Esref Oguz Güven, Faruk Yencilek,
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